

Student Manual

Copyright © 2016 by PEC/Premier Safety Operations, LLC Version 03172020

All rights reserved. Printed in the United States of America. Per the United States Copyright Act of 1976, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.

All trademarks and registered trademarks are the property of their owners. Various photos and videos used in this program are accredited to PEC Safety, Shutterstock, and the United States Armed Forces. Title: H₂S Clear: Student Manual Published by: PEC Safety

Disclaimer: Course participants will not have met the requirements to work in H_2S environments above the Occupational Exposure Limits (OEL) until such time as the company provides and documents additional applicable training required by 29 CFR, including medical evaluations, fit testing, and use of respirators and monitor and rescue equipment specific to the workplace.

PEC Safety 233 General Patton Avenue Mandeville, LA 70471 Phone: (800) 892-8179 Fax: (985) 892-8114 Website: www.pecsafety.com

Table of Contents

Contents

Intro	duction	2
•	Regulations and Standards	2
•	Responsibilities	3
٠	Training	3
Sour	ces of Hydrogen Sulfide	4
Physi	cal and Chemical Properties	5
Route	es of Exposure	8
٠	Limits of Exposure	8
Heal	th Effects	8
•	Acute Toxicity	10
•	Chronic Toxicity	10
Com Hydr	municating the Hazards of ogen Sulfide	11
Com Hydr •	municating the Hazards of ogen Sulfide Warning Signs and Alarms	11 11
Com Hydr •	municating the Hazards of ogen Sulfide Warning Signs and Alarms Engineering Controls	11 11 11
Com Hydr	municating the Hazards of ogen Sulfide Warning Signs and Alarms Engineering Controls Sulfur Dioxide	11 11 11 13
Com Hydr • •	municating the Hazards of ogen Sulfide Warning Signs and Alarms Engineering Controls Sulfur Dioxide Administrative Controls	11 11 11 13 14
Com Hydr • • • • •	municating the Hazards of ogen Sulfide Warning Signs and Alarms Engineering Controls Sulfur Dioxide Administrative Controls tion and Monitoring Methods	11 11 11 13 14 22
Com Hydr • • • Detec	municating the Hazards of ogen Sulfide Warning Signs and Alarms Engineering Controls Sulfur Dioxide Administrative Controls tion and Monitoring Methods	11 11 13 14 22 23
Com Hydr • • • • •	municating the Hazards of ogen Sulfide Warning Signs and Alarms Engineering Controls Sulfur Dioxide Administrative Controls tion and Monitoring Methods Training Fixed Detector Service and Calibration	11 11 13 14 22 23 23
Com Hydr • • • • •	municating the Hazards of Ogen Sulfide Warning Signs and Alarms Engineering Controls Sulfur Dioxide Administrative Controls tion and Monitoring Methods Training Fixed Detector Service and Calibration Fixed Detectors	11 11 13 14 22 23 23 24
Com Hydr • • • • •	municating the Hazards of ogen Sulfide Warning Signs and Alarms Engineering Controls Sulfur Dioxide Administrative Controls tion and Monitoring Methods Training Fixed Detector Service and Calibration Fixed Detectors Personal Monitors	11 11 13 14 22 23 23 24 24

Usin	g a Gas Monitor	26
•	Gas Monitor Operation	26
•	Bump Testing	27
•	Calibration	28
Resp	iratory Protection	31
•	Training	31
•	Medical Evaluation	31
•	Fit Testing	31
•	Types of Respirators	32
•	Respirator Limitations	33
•	Selecting Respirators for Use	35
Resp	irator Use	35
•	Respirator Inspection	35
•	Checking the Seal	35
•	Maintenance, Cleaning, and Storage	36
٠	Immediately Dangerous to Life or Health	37
•	Respirators for Use with Hydrogen Sulfide and Sulfur Dioxide	37
Hydi Spac	rogen Sulfide in Confined ces	38

Emergency Response		
Contingency Plans	40	
Dispersion Models	40	
Immediate Action Plans	41	
• Rescue	41	
• First Aid	43	
Post-exposure Medical Evaluation	43	
Protect Yourself		
Glossary		
Acronyms and Abbreviations		

page iv

Introduction

Hydrogen sulfide, or H_2S , is a hazard that can creep up on you. You cannot see it, and if the concentration is high enough, you will not even be able to smell it. This toxic gas is colorless and collects in low-lying areas. H_2S is so powerful that it can kill you with one breath. It is known as "The Silent Killer." In this course, we will review how you can protect yourself and your coworkers from hazardous exposure to H_2S .

Regulations and Standards

Several government agencies regulate H_2S exposure. OSHA enforces safety regulations, lists exposure limits for the gas, and has specific respiratory protection requirements listed in 29 CFR 1910.134. The National Institute for Occupational Safety and Health (NIOSH) and the American Conference of Governmental Industrial Hygienists (ACGIH) provide exposure recommendations, and the American National Standards Institute (ANSI) provides specific practices to use to mitigate the hazards of H_2S within the oil and gas industry. The American Petroleum Institute (API) writes recommended practices for operations involving H_2S in the oil and gas industry.

The Environmental Protection Agency (EPA) formed two laws, the Superfund Amendments and Reauthorization Act (SARA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), which specify the reportable quantities (RQs) for hazardous materials. H_2S has an RQ of 100 lbs., and sulfur dioxide (SO₂), a byproduct of H_2S combustion, has an RQ of 1 lb.

For more information, see the following list of standards that address H₂S:

- ANSI Z390.1-2006 (R2010): Accepted Practices for Hydrogen Sulfide (H₂S) Training Programs
- 29 CFR 1910.1000 Table 2
- API Recommended Practice 49: Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide
- API Recommended Practice 55: Recommended Practices for Oil and Gas Production and Gas Processing Plant Operations Involving Hydrogen Sulfide
- Bureau of Safety and Environmental Enforcement (BSEE) 30 CFR 250.490: Hydrogen Sulfide
- Various state regulatory agencies, such as Texas Railroad Commission and the Oklahoma Corporation Commission
- US Coast Guard (USCG)
- Bureau of Land Management
- State OSHA Plans
- Environment Canada
- Workplace Hazardous Materials Information System (WHMIS)

In addition to the federal agencies, states also have their own regulations about H_2S . If you are not sure which regulations apply to you, consult your company representative and your state's code of law.

Responsibilities

Each person involved in a company's operations has certain responsibilities. Different responsibilities apply to companies and workers.

Responsibilities			
Company	Worker		
 Protecting workers from H₂S exposure Identifying H₂S hazards Providing appropriate annual training to all workers 	 Attending annual H₂S education and training sessions Using controls and following safe work practices 		
 Workers Establishing safe work practices relating to H₂S Monitoring H₂S levels throughout the workplace Providing PPE specifically designed to shield the workers from effects of H₂S Accounting for workers Performing a thorough check for ignition sources in the area before starting any potentially hazardous work Providing at least one worker qualified to perform first aid and CPR for H₂S victims 	 Using required PPE and personal monitors Reporting exposure incidents Using SWA when necessary Making sure that work areas, vents, and purge lines are functioning and ventilated before starting work 		

Training

Companies are responsible for training workers in a way that every worker can understand. All workers must receive appropriate training according to their level of potential exposure to H₂S. Training should cover

- What to do in emergencies
- Your role in the H₂S contingency plan
- Participation in drills

Workers should participate in drills that simulate an emergency involving H₂S where they can practice performing their duties and enhance emergency planning and readiness. These drills should be realistic simulations where equipment is deployed, communications gear is tested, and workers role-play as rescuers and victims. After drills, contingency plans should be revised and retested until those responsible for the plan are confident the plan is operational.

Training is a necessary part of protecting workers

Sources of Hydrogen Sulfide

H₂S can occur naturally or be produced during industrial processes. H₂S is produced in nature primarily through the decomposition of organic material by bacteria. Natural H₂S can also develop within low-oxygen environments, such as bogs, swamps, and polluted water. H₂S also forms part of natural gas, petroleum and crude oil, sulfur deposits, volcanic gases, and sulfur springs. "Sour" crude oil refers to oil that contains .05% sulfur.

During industrial operations, H₂S can form as a product, byproduct, or waste material. Companies often attempt to recover byproduct H₂S and convert it into elemental sulfur or sulfuric acid, also known as battery acid.

During oil and gas well-drilling operations, H_2S may be released at the shale shaker area, the circulation fluid treatment areas, during tripping procedures, at the wellhead, at the cellar, and onto the drilling floor.

H₂S may also form when organic material, such as manure or vegetable matter, breaks down without oxygen.

Volcanic gases

A shale shake

Farm workers can be exposed when cleaning manure storage tanks or working in manure pits. This may happen, for example, with sewage in a septic tank. Sanitation workers can be exposed when cleaning or maintaining municipal sewers and septic tanks.

H₂S is often a by-product in the making of pulp and paper, fertilizers, glues, dyes, plastic wrap, and other products.

Workers are likely to find H₂S in:

- The pulp and paper industry, where H₂S is a by-product of wood breaking down into pulp
- The petroleum industry, especially at oil and natural gas wells; in refineries, where H₂S is removed from natural gas and oil; and in pipelines used to carry unrefined petroleum
- The construction industry, where H₂S could be released during excavation work in swamps or old landfills
- Sewers, sewage treatment plants, manure tanks, and other places where organic material breaks down without oxygen
- Iron smelters, coke ovens, and other places where H₂S may be a by-product

- In some mines and tunnels where mineral rock may contain H₂S
- In coal fired plants, H₂S and SO₂ may be encountered during line-break activities
- In animal rendering plants, H₂S may be encountered from decomposing matter, such as blood, fat, and other animal parts, during some work activities

Environments laced with H₂S are known as "sour" environments. Sour environments are defined as fluids that contain water and H₂S. Water injection and other enhanced recovery operations may introduce bacteria into the pipelines that produce soluble H₂S. The H₂S can accumulate over time and leak into produced fluids. Treat drilling fluids before drilling to prevent H₂S buildup. The drilling company should have a drilling treatment plan in place before you ever begin work.

Some companies produce H₂S for use in manufacturing. These companies will have containers of H₂S stored in their buildings and eventually transport the gas to other companies. Each H₂S container must have certain label elements to warn workers of its dangerous contents. You may see containers labeled with Globally Harmonized System (GHS) or National Fire Protection Agency (NFPA) ratings.

Physical and Chemical Properties

H₂S may be called rotten egg gas, swamp gas, sour gas, meadow gas, stink damp, devil's breath, and many other names. You may see it listed in chemical manuals as sulfuretted hydrogen, hydrogen sulphide, hydrosulfuric acid, or dihydrogen sulfide. In Spanish, H₂S is called "sulfuro de hidrógeno" or referred to as "gas venenoso." These names all refer to the same toxic gas. H₂S goes by so many unusual names because of its distinctive smell at low concentrations. The chemical formula for H_2S is two parts hydrogen and one part sulfur. H_2S is an inorganic sulfide that is highly toxic and colorless. Because of its toxicity, the EPA has classified H_2S as hazardous waste, and it must be transported and disposed of as such. Concentrations of H_2S are measured in parts per million (ppm) or percentages.

Parts per million	Percentages
1,000,000 ppm	100%
100,000 ppm	10%
10,000 ppm	1%
1,000 ppm	0.1%
100 ppm	0.01%
10 ppm	0.001%
1 ppm	0.0001%

 H_2S is slightly heavier than air with a density of approximately 1.5 grams per liter (g/L) and a vapor density of 1.19 at 32°F at 760 millimeters of mercury (mmHg). This means that H_2S is approximately 19% heavier than air at an equal temperature and tends to collect in low-lying areas because it will sink below the lighter air you breathe. The gas will also collect in confined spaces.

Areas of Potential H ₂ S Exposure			
- Cellars	- Manholes	- Sewers	
 Confined spaces 	- Manure pits	- Tanks - Trenches	
- Containments dikes	- Pits	 Vacuum trucks 	
 Heater treaters 		in o o no	

 H_2S will collect in any enclosed facility or piping that contains H_2S gas or H_2S -contaminated fluids, including the examples listed in the Areas of Potential H_2S Exposure chart.

 H_2S has a very low melting point (-117.2°F), so it will almost always be a gas. H_2S can also be compressed into a liquid gas and transported by sea, highway, rail, air, or pipeline.

 H_2S has a dangerous flammable limit of 4.3%-46% vapor by volume in air, which means it is extremely flammable. The gas can spontaneously combust at high temperatures. H_2S is also quite explosive. It has an auto-ignition temperature of 500°F and an extremely low flashpoint of -76.4°F.

Bleach and hydrogen peroxide are strong oxidizers

When H₂S contacts strong oxidizers, such as bleach or hydrogen peroxide, it can cause fires, explosions, or metal damage.

H₂S is soluble in (can dissolve in) water and oil, but its solubility decreases as the temperature of the liquid rises. When H₂S dissolves in water, it forms an acid that can corrode metal.

H₂S causes severe corrosion to metals, such as copper, carbon steel, steel, silver, brass, and bronze. Metals housing H₂S gas can suffer sulfide stress cracking or become very brittle. If either of these happen, a metal container, such as a pipeline, may fail entirely, causing the gas to escape into the open air. To avoid metal corrosion, treat drilling fluids (and other products as necessary) to chemically reduce the corrosive properties of H₂S before you start work.

Many metals (like iron or steel) will react with H_2S to form metal sulfides, which can spontaneously ignite when exposed to air. For example, H_2S will react with iron or spent iron sponge (a treating material) to produce iron sulfide, which can auto-ignite and burn when exposed to air.

lear

Physical and Chemical Properties of H ₂ S			
Property	Characteristics	Hazards	
Toxicity	- Highly toxic	- Causes severe health effects if inhaled	
Density	 Density: 1.5g/L Vapor density: 1.19 at 32°F at 760 mmHg 19% heavier than air 	- Collects in low-lying areas and confined spaces	
Flammability	- Flammable limit: 4.3% – 46% vapor by volume in air	 Extremely flammable May spontaneously ignite at high temperatures 	
Melting point	 Melting point: -117.2°F (very low) Can be compressed into a liquid and transported by sea, highway, rail, air, or pipeline 	 H₂S is almost always in gas form, meaning it will be invisible to you If in compressed liquid gas form, can cause frostbite upon contact 	
Combustibility	- Auto-ignition temperature: 500°F - Flashpoint: -76.4°F (extremely low)	- Quite explosive - Transported containers of compressed H ₂ S may explode if exposed to fire or handled carelessly	
Reactivity	 Reacts with strong oxidizers (e.g., bleach, hydrogen peroxide) to cause fire, explosions, or metal damage Reacts with many metals (e.g., iron, steel) Can dissolve in water and oil 	 Produces toxic SO₂ gas when burned Forms metal sulfides that spontaneously ignite when exposed to air When dissolved in water, forms weak acid that corrodes metal Severely corrosive to metals, such as steel, carbon steel, copper, silver, brass, and bronze 	

When exposed to air, iron sulfide should be kept wet until it can be disposed of.

 H_2S is highly toxic, which means that exposure to H_2S can affect your health. H_2S gives off an unpleasant odor similar to rotten eggs that is easily detected at low concentrations. At high concentrations, H_2S impairs and even temporarily eliminates your sense of smell. Because of the rapid onset of olfactory fatigue and paralysis (loss of the sense of smell), do not rely on odor as the only warning for the presence of H_2S . At higher concentrations, H_2S also causes severe health effects if inhaled.

Pipe corroded by H₂S

Routes of Exposure

You can be exposed to H_2S through inhalation or skin contact. Practice good personal hygiene to help prevent any damage to your health. The exposure that poses the greatest danger to workers is death by inhalation. Skin absorption of H_2S is minimal, but it is a concern when you are exposed to compressed liquid H_2S . Concentrations of H_2S above 10 ppm are generally regarded as unhealthy for continuous exposure. Ten ppm of H_2S is the industry accepted exposure level. Check with your client and operator for their accepted exposure level.

Limits of Exposure

OSHA, NIOSH, and ACGIH have exposure limits set for H_2S to protect workers from harm. Note that their exposure limits are for air levels only. If liquid H_2S touches your skin, you can become overexposed even if the H_2S concentration in the area is lower than the exposure limit. The Hydrogen Sulfide Workplace Exposure Limits table lists the exposure limits from each organization. If the H_2S concentration is at or above 100 ppm, it is immediately dangerous to life or health (IDLH), and you will need special PPE to work in that environment.

H ₂ S Workplace Exposure Limits			
Organization	Exposure Limit		
OSHA	- ACC: 20 ppm		
NIOSH (followed by API and ANSI)	- REL: 10 ppm - IDLH: 100 ppm		
ACGIH	- TLV-TWA: 1 ppm - STEL: 5 ppm		

Health Effects

When you inhale H_2S , the chemical affects your eyes, nose, brain, lungs, and the nerve pathways that connect them to each other. Specifically, H_2S paralyzes the nerves that interpret smells for your brain. H_2S also impairs the part of your brain that controls your breathing, which can cause you to have trouble with or even stop breathing. Symptom severity depends on the gas concentration and how long you were exposed. Look at the Health Effects of Exposure to Hydrogen Sulfide table, and notice how the health effects become increasingly severe as the H_2S concentration increases.

H₂S affects these nerve pathways

An H₂S concentration of 1,000 ppm, only 1/10 of 1%, will cause immediate unconsciousness and death.

Reactions to H_2S can vary from person to person because everyone is different. You may be more susceptible or sensitive to the effects of H_2S because of any of several factors. These individual variables include body mass, overall physical condition, age, smoking habits, and personal biochemistry. For example, if you have asthma, you will be more sensitive to lower concentrations of H_2S and may have trouble breathing sooner than workers who do not have asthma. Other variables that affect your reaction to H_2S include the exposure concentration, frequency, and duration.

If you smoke cigarettes, drink alcohol, or take prescription medications or illicit drugs, you may be more sensitive to the effects of H₂S. These substances are toxins that your liver normally filters out of your body. If you have taken or used any of these before you are exposed to H₂S, your liver has to filter multiple toxins out of your bloodstream. As your liver works harder to clean your blood, it may become overwhelmed and stop metabolizing at its normal rate, allowing toxins to linger and compounding the effects of H₂S on your body.

You can also become more sensitive to the effects of H₂S naturally. If you are repeatedly exposed to low concentrations of H₂S over a long period of time, you can become sensitive to the substance. When you are exposed again, you may experience increasingly severe health effects at lower concentrations. Wearing contact lenses can also make you more sensitive to the effects of H₂S. Wearing contact lenses while working in an H₂S environment could cause eye irritation. Some operators may not allow workers to wear contact lenses on their site.

Tympanic membrane defect is a perforation of the ear drum. This medical condition would not excuse a worker from wearing an air-supplied respirator in a hazardous atmosphere according to majority medical opinion. The primary cause of death from a lethal exposure to H₂S would most likely be listed as H₂S poisoning.

Health Effects of Exposure to Hydrogen Sulfide			
1 ppm	- Can smell H ₂ S odor		
10 ppm	- Headaches, dizziness, nausea and vomiting, coughing, difficulty breathing		
20 ppm	- Irritated, inflamed eyes and irritated airways after 1 hour of exposure		
50 ppm	- Sense of smell eliminated after 15 minutes or more of exposure		
100 ppm	- Loss of sense of smell after 3 minutes		
	- Respiratory tract and eye irritation		
200 ppm	- Sense of smell eliminated almost instantly		
	- Burning eyes and nose		
500 ppm	- Unconscious after brief exposure		
	- Victim will not be able to breathe if not treated quickly		
700 ppm	- Unconscious almost instantly		
	- Breathing stopped		
	- Victim will die if not rescued right away		
1,000 ppm	- Instant unconsciousness		
	- Permanent brain damage or death		

This workbook is published by Veriforce/PEC. It is copyright protected and may not be reproduced or distributed to any other parties without written consent from the publishe

Symptoms of Hydrogen Sulfide Exposure				
Sensitivity	Chronic Toxicity	Acute Toxicity		
 Loss of sense of smell Excitement or giddiness Eye irritation Coughing and sneezing Headaches 	 Eye irritation Headaches Nausea Loss of appetite (seen as "anorexia" on SDS) Sleep disturbances 	- Inflamed eyes - Headaches - Fatigue - Irritability - Trouble sleeping		
 Nausea Diarrhea Dizziness and confusion Staggering gait Sensitivity to light [seen as "photophobia" on Safety Data Sheet (SDS)] 	 Respiratory tract irritation Corneal blistering, pitting, and opacity Fluid in the lungs 	- Trouble eating or digesting food - Weight loss		
 Respiratory tract irritation Fluid in the lungs (seen as "pulmonary edema" on SDS) Respiratory arrest Cardiac arrest Brain damage Death 				

Acute Toxicity

Acute exposure can lead to acute toxicity, the health effects that are the result of a single dose or exposure to a substance. A single breath of H_2S at about 1,000 ppm can paralyze your respiratory system and result in convulsions, coma, and death. To see what symptoms can result from acute toxicity caused by H_2S , read the Symptoms of Hydrogen Sulfide Exposure table.

Chronic Toxicity

Chronic exposure is when you come into contact with low concentrations of H₂S over a long period of time. Chronic exposure to H₂S has been known to cause low blood pressure, loss of appetite, weight loss, and chronic cough. Neurological symptoms, including psychological disorders, have also been associated with chronic exposure. To see what other symptoms can result from chronic toxicity caused by H₂S, read the Symptoms of Hydrogen Sulfide Exposure table.

heart and lungs.

Repeat exposures to H₂S within 24-72 hours does

H₂S interferes with the oxygen-carrying capabilities

medulla oblongata is the continuation of the spinal

cord within the skull, forming the lowest part of the

There are two categories of health effects: acute and

chronic. Acute effects occur after exposure to a high

Chronic effects occur when you come into contact with

low concentrations of H₂S over a long period of time.

concentration of H₂S over a short period of time.

brainstem and containing control centers for the

of the red blood cells in the human circulatory

system. This effect may paralyze the medulla

oblongata and cause respiratory arrest. The

not result in cumulative poisoning.

Clear

Communicating the Hazards of Hydrogen Sulfide

Warning Signs and Alarms

Companies use OSHA-required warning signs to mark areas contaminated with H_2S . These warning signs correspond to the concentration of H_2S within the area.

All well-drilling sites will be classified based on whether H_2S is present or not. There are three types of warning signs posted around H_2S areas. These three signs have color-coded flags based on the severity of the hazard. These flags correspond to classified API conditions. There are four API classifications for H_2S areas: No Hazard Condition, API Condition I – Low Hazard, API Condition II – Medium Hazard, and API Condition III – High Hazard. These classifications are based on potential or actual exposure to H_2S . For information about each hazardous API Condition, read the API Hydrogen Sulfide Conditions table on page 12.

Alarms you can hear and see must be set up around H_2S areas to coordinate with H_2S detectors. Alarms should sound when an H_2S detector picks up a certain H_2S concentration. Different alarms should be set based on how much H_2S is present. The Typical Alarm Settings table on page 12 shows you which alarms go off at certain concentrations of H_2S under typical alarm settings. When you see flashing lights or hear an alarm, leave the area immediately unless you are trained and authorized to deal with an H_2S emergency.

Engineering Controls

Companies use engineering controls as the first way to protect you from H₂S. Companies work from a long list of controls to keep you from being exposed to high concentrations of H₂S. Training must include discussion about site-specific engineering controls.

API Condition II flag shown with H₂S warning sign

Workers must be familiar with the following:

- Design or remodeling of worksites
- Enclosed worksites
- Ventilation and monitoring equipment
- Metallurgical properties of equipment
- Burning, flaring, and venting of H_2S
- Containment and dispersion

Most companies prefer to use local exhaust or natural ventilation to control the amount of H_2S in the air. Enclosing the H_2S producing process can also keep H_2S out of the air. All of these controls must be in place to keep exposure as low as is reasonably achievable.

Typical Alarm Settings				
	Alarm Level	H ₂ S Concentration	Warning Signal	
On Land	Low alarm	10 ppm	Flashing amber light	
	High alarm	20 ppm	Intermittent siren	
Offshore	Low alarm	10 ppm	Flashing amber light	
	High alarm	20 ppm	Intermittent siren and flashing red light	
	Very high alarm	50 ppm	Continuous siren and flashing amber and red light	

API Hydrogen Sulfide Conditions				
API Condition	Suspected H ₂ S Concentration (ppm)	Requirements	Minimum Necessary Special Safety Equipment	Assigned Flag
No Hazard Condition	Negligible or no amount of H ₂ S	 No special equipment required 	- None	- None
API Condition I – Low Hazard	Less than 10 ppm	- Safety equipment readily accessible	 Oxygen resuscitator H₂S detector 	- Green
API Condition II – Medium Hazard	10 ppm – 30 ppm	 Audible and visual alarms in place Safety equipment readily accessible 	- Oxygen resuscitator - H ₂ S monitor	- Yellow
API Condition III – High Hazard	Greater than 30 ppm	 Warning signs posted within 500 ft. of area at all entrances in addition to signs at entrances to space Safety equipment readily accessible Inspect all H₂S safety equipment before entering Emergency procedures and emergency contacts in place At least 2 exits available No untrained workers allowed in area 	 1 metered H₂S monitor 1 pump H₂S monitor Respiratory protection Oxygen resuscitator 3 wind socks or streamers 2 NIOSH-approved 30-minute escape pack SCBAs 	- Red

Burning and Flaring

Some companies provide flaring or venting lines when H_2S could be present in concentrations over 15 ppm. These lines provide an engineering control designed to reduce worker exposure. Companies may burn off the H_2S gas to prevent it from accumulating in the work area. Burning and flaring H_2S produces SO_2 . To protect yourself during burning and flaring operations:

- Monitor the SO₂ concentration in the air with portable or strategically placed fixed devices capable of detecting a minimum of 2 ppm SO₂
- Take readings at least hourly and any time workers detect SO₂ odor or nasal irritation
- Use the protective measures specified in your company's H₂S contingency plan if the SO₂ concentration in the work area reaches 2 ppm

- Select and wear the appropriate PPE following the guidelines listed in your company's H₂S contingency plan
- Calibrate SO₂ monitors every 3 months, or as recommended by the manufacturer

Burning and flaring

Sulfur Dioxide

When H_2S burns, it forms another toxic gas, SO_2 . Iron sulfide, a product of an H_2S reaction with iron, will also produce SO_2 when burned. SO_2 is a very irritating toxic gas that is colorless and has a burned match odor. Its vapor density of 2.26 at 32°F under normal atmospheric pressure (760 mmHg) means that SO_2 is also heavier than air and will collect in low-lying areas and confined spaces. When someone inhales SO_2 , it produces sulfurous acid on the nose and throat membranes and they suffocate. SO_2 exposure mainly affects your eyes, throat, and lungs. As you are exposed to higher concentrations of SO_2 , symptoms become increasingly severe. Chronic exposure to SO_2 , or exposure to low concentrations over a long period of time, can alter a victim's sense of smell and taste, cause exerciseinduced shortness of breath, predispose you to frequent respiratory infections, and increase your risk of developing chronic cold symptoms, known as nasopharyngitis.

To protect yourself from SO₂ exposure, API recommends you wear either a positive-pressure, full-facepiece supplied air respirator (SAR) and an escape pack, or an SCBA in any area with SO₂ concentrations at or over 2 ppm over an 8-hour time-weighted average (TWA). OSHA sets its permissible exposure limit (PEL) for SO₂ at 5 ppm over an 8-hour TWA. ACGIH recommends 0.25 ppm as a short-term exposure limit (STEL) averaged over 15 minutes. The Sulfur Dioxide table on page 14 shows how symptoms become increasingly severe as you are exposed to higher concentrations of SO₂.

SO, molecule

Sulfur Dioxide			
Concentration in air in ppm	Exposure Limits and Typical Characteristics		
0.25 ppm	- ACGIH STEL		
1 ppm	- Burned match odor		
	- May cause respiratory changes		
2 ppm	- NIOSH REL		
	- API action level		
5 ppm	- Burning eyes, breathing irritation, and minor throat irritation		
	- Osha pel		
	- NIOSH STEL		
12 ppm	- Throat-irritating cough		
	- Constriction in chest		
	- Watering eyes		
	- Nausea		
100 ppm	- IDLH		
150 ppm	- Extreme irritation		
	- Can be tolerated for only a few minutes		
500 ppm	- Causes a sense of suffocation, even with the first breath		
	- Rescue promptly and apply artificial ventilation and CPR techniques		
1,000 ppm	- Death may result unless rescued right away		
	- Immediately start artificial breathing and CPR		

Administrative Controls

Administrative controls, or proper work procedures and practices, are the second way companies protect you from H_2S . Administrative controls can greatly reduce the number of H_2S -related accidents. Your company should verify that you are trained to handle H_2S environments and conduct site-specific safety meetings (tailgate meetings).

Your company must provide you with site-specific, hands-on H_2S training before you may work in an environment contaminated with H_2S . After you have completed all required H_2S training, remember to obtain all required work permits before you start work in H_2S environments.

During work, use the safe work practices we will discuss in this section.

If you feel that your work is putting you in danger of death or serious physical harm or could cause significant environmental harm, it is your right (and the right of all workers) to use Stop Work Authority (SWA) to stop work. Use SWA as necessary. Attend and participate in company provided safety meetings. These meetings should be held before each job involving H₂S. Make sure you perform a job safety analysis (JSA) before you start work. Now we will discuss other administrative controls, including observing wind conditions, controlling ignition sources, performing ventilation and air monitoring, and using the buddy system.

Make sure that all required permits are used and that compliance is maintained with the requirements of the permit.

Wind conditions tell you which way H₂S will spread. Stay aware of wind conditions and direction at all times. Check the wind sock or streamer regularly and any time you are unsure which direction the wind is blowing. Whenever possible, start on the upwind side when working on equipment. Make sure you are not downwind of an H₂S source. Have an escape route, and know where the exits are in case you have to get out immediately. Stop breathing then always move crosswind and then upwind to get away from a source of H₂S.

If you notice the smell of H₂S or hear an alert or alarm, stop breathing and don your escape pack respirator, if applicable. Leave the area immediately going crosswind (at a right angle) and then upwind.

Use non-sparking tools, non-sparking corrosionresistant ventilation systems, approved explosionproof equipment, and intrinsically safe electrical systems in areas where H₂S may be present. Companies use sealed piping systems to help contain or prevent the release of H₂S gases from containers and piping systems.

Worker is Severely Injured in Hydrogen Sulfide Explosion

A contractor was checking the oil level on a tank. He was using a metal wrench to remove an access panel, when hydrogen sulfide inside the tank exploded, throwing him into his truck, which was parked 40 yds. away. He suffered multiple broken bones, internal injuries, and burns over 85% of his body.

What went wrong?

1.

Did you find anything else that may have contributed to this accident?

1.		
2.		
3.		
4.	 	

Perform a thorough check for workers and ignition sources in the area before you start any potentially hazardous work. Notify your supervisor before you start operations that could release H₂S. If you are working in a permit-required confined space, maintain compliance with the permit requirements. Ventilate work areas, vents, and purge lines on vessels before beginning work. Always maintain continuous air monitoring while working in confined spaces. Never take shortcuts, and always follow all procedures.

Always ventilate before beginning work

Use the buddy system when working in IDLH atmospheres and areas. When using the buddy system, workers are paired off so that if one buddy is struggling, the other buddy can assist or call for help. When you are paired off, look out for your buddy. Make sure you maintain contact with your buddy, and know where they are at all times while in the H_2S area. Keep all non-essential workers away from the area to reduce unnecessary H_2S exposure. As a buddy, you must be able to:

- Help your buddy with rescue operations if trained
- Observe your buddy for signs of hazardous exposure
- Periodically check your buddy's PPE to make sure it is still sound
- Notify the appropriate person if your buddy needs emergency help

The buddy system is also a useful tool in other hazardous situations. Having a buddy while you enter confined spaces and hazardous areas is a good practice. Make sure all workers working in any of these situations are properly trained. Your company may also have a lone worker policy. If so, review the policy and ask your supervisor if you have any questions.

Verify that proper safety equipment is available and functioning. Make sure safety equipment is used when necessary. Every worker must know where safety equipment is stored and how to use it. Make sure you are monitoring H₂S conditions using an H₂S monitoring system.

To protect yourself and the equipment you are working on, API recommends the following practices for:

- H₂S service operations
- Drilling and servicing operations
- Production facilities/fluid transfer and maintenance
- Offshore operations
- Gas processing plants

Hydrogen Sulfide Service Operations

Observe flow line and gathering line right-of-ways for abnormal conditions conducive to pipeline failures, such as those caused by excavation, construction, trespassing, dramatic changes in landscape, or surface erosion. Be cautious because you could be exposed to H₂S during excavation.

Inspect valves, flanges, gauges, connections, and liquid storage tanks to see if they need repairs or maintenance. Follow the maintenance schedule for performing tank gauging, water line blowdown, line repair, valve replacement, and sampling so that H₂S release hazards can be avoided.

A soap bubble test can detect small leaks

Drilling and Servicing Operations

Test tanks for H₂S. If the H₂S concentration exceeds or could exceed 10 ppm during sampling or tank gauging operations, more controls are needed and workers must wear respiratory protection during these operations.

When abandoning facilities, pipelines and flow lines left in place should be purged and bullplugged, or otherwise capped. Take precautions to prevent an iron sulfide fire. Check vessels for the presence of naturally occurring radioactive material (NORM). Vessels must be flushed with water, purged, drained, locked out and tagged out by blinding or isolating equipment, and left open to the atmosphere.

Take necessary precautions during the following operations because H₂S may be present:

- Plugging and abandoning wells
- Hydraulic fracturing (also known as fracking)
- Snubbing
- Perforating (also known as perfing)
- Acidizing
- Fishing
- Running or pulling tubing
- Tubing
- Wireline
- Any other drilling or workover operations

When performing a hydrochloric acid treatment on a produced water injection well, the hydrochloric acid can react with iron sulfide scale in the well bore/rig tank to create H₂S gas. Workers or the supervisor should anticipate the potential H₂S hazard. Adequate mitigation steps should be in place to protect workers from potential H₂S exposure. Inform all contractors and well-site supervisors about the requirement to monitor LEL/ H₂S when flowing back to an open tank. Make sure workers onsite are equipped with personal monitoring devices when required. Use a JSA before this type of work to review the specific issues that relate to the concentrations and procedures for that site. Make sure company and contractor workers know that acidizing procedures include the potential hazard of H₂S as a byproduct. Remind everyone that they have SWA.

H₂S may be released during a kick or burp during drilling or work over. A kick or burp is when fluid unintentionally or unexpectedly enters the wellbore. Kicks or burps occur because the pressure exerted by the column of fluid in the wellbore is not great enough to overcome the pressure exerted by the fluids in the formation drilled.

A Worker Collapses During Acidizing

A worker was exposed to H₂S gas while performing a hydrochloric acid treatment on a produced water injection well. The worker was positioned on top of the rig tank, adding neutralizing agent to the fluids returning from the acidized well. He was exposed to vapors from the tank, felt dizzy, and began descending the stairs from the rig tank. It is believed that he lost consciousness while descending the stairs, falling to the ground at the base of the tank. He immediately regained consciousness and with assistance was transported to the local medical center. He was checked out and returned to work the next day. Readings taken at the rig tank shortly after the incident indicated concentrations of 30 ppm H₂S and during a re-enactment, readings of up to 80 ppm H₂S were generated while the neutralizing agent was being added. This field has consistently measured concentrations of less than 1 ppm H_aS.

What went wrong?

1. Did you find anything else that may have contributed to this accident? 1. 1.

Discuss the recommended preventative actions shown in the PowerPoint with your instructor.

lear

6.		
7.	 	
8.		

H₂S may be released during a kick or burp during drilling or workover operations. A kick or burp is an entry of water, gas, oil, or other formation fluid into the wellbore during drilling or workover. It happens because the pressure exerted by the column of fluid in the wellbore is not great enough to overcome the pressure exerted by the fluids in the formation drilled.

Production Facilities/Fluid Transfer and Maintenance

Production tanks and facilities can contain substantial volumes of hydrocarbons and H₂S. When performing tank gauging, thieving (sampling), fluid transfer, or maintenance operations, special precautions should be taken to protect yourself from these hazards. Also be aware that haulers transporting production water are not required by Federal DOT to label or placard their loads, even though these tanks may contain an H₂S hazard. Products going into these tanks with concentrations as low as 0.2 ppm could potentially create H₂S atmospheres that are above occupational exposure levels (OELs) that require respiratory protection.

Concentrations of 2 ppm could potentially create H_2S atmospheres that would reach IDLH levels in the tank headspace with a 50:1 ratio. Workers should follow operator or company operating procedures when they encounter these conditions.

Operating procedures could include:

- Following JSA and SWA procedures
- Noting wind direction from a windsock or streamer
- Using extreme caution on foggy days and days with little or no wind, especially after sundown
- Using non-spark-producing tools and equipment
- Grounding to bare metal before opening hatches, valves, flanges, hoses, or pots

A pot is the catch pan that encircles the cam lock hose connection that hooks up to storage tanks for drivers to transfer product from the tanks to the trucks to transport the product. There are also scrubber pots, or scrubbers, that are placed where product is collected and either separated or treated.

- Paying close attention when opening fiberglass or tanks that are not grounded
- Standing upwind from the thief hatch or source of the H₂S
- Opening tanks downwind first and working towards the upwind tanks last
- Keeping your head away from the tank opening
- Waiting for the pressure to dissipate before gauging, connecting hoses, or removing valves and flanges

how to recognize and avoid hazards gauging • thieving • fluid handling

gases and vapors. Those may result in very low oxygen levels and toxic and flammable conditions around and over the hatch. Recent reports have documented fires or explosions, and described workers experiencing dizziness, Opening thief hatches of storage tanks can lead to the rapid release of high concentrations of hydrocarbon fainting, headache, nausea, and, in some cases, death while gauging tanks, collecting samples, or transferring fluids.

EMPLOYERS:

Tank gauging, thieving, and fluid handling can be performed safely with proper precautions.

potential effects

of exposure

Must Conduct Exposure and Hazard Assessments at

Worksites to determine needs for:

that workers can

chronic illness

flash fire burns

• PPE

encounter

hazards

death

 Respiratory Protection Engineering Controls Monitoring Device such as: Other direct-reading toxic gas meter (benzene) Multi-gas meter

eyes

head

protect your

per your training

ears tace

body

- **Must Provide Training to Workers:**
- Lone Worker Policy Hazard Communication Tank Gauging work practices/procedures
- Emergency Response Plan Procedures for alarm response

tract

respiratory

fires &

wirregular heartbeat

02

o, oxygen deficiency

dizziness (

explosions

chemical

hydrocarbon toxicity

) nausea

tatigue

propane benzene

eye irritation

1 headache

butane vapors

> Use and limits of toxic- or and site re-entry

Types, use, and limits of

Proper use of PPE and

respiratory protection

 Recognizing ignition sources equipment as appropriate respiratory protection IEL, and CO multi-gas meter tor O₂, H₂S,

Should Implement Engineering Controls such as:

Sight Glasses/Gauges

Remote Gauging

- Remote Venting
- Auto Gauging

hydrogen sulfide (H₂S)

Þ

Verify sub-contractors are following work practices/procedures Closed Loop Systems

hands legs feet Sparks from tools or Cell phones Static metal objects

al iance

WORKERS:

Your employer has established safety procedures for your protection including a Hazard Assessment and Work Practices/Procedures

Follow your employer's Hazard Assessment and Established Work Practices/Procedures

- Use toxic- or multi-gas meter provided by your employer as Follow your employer's "lone worker" policy
- Allow tanks to ventilate after opening thief hatches
- Evacuate unsafe work areas
- and report immediately
- Know the limits of your

 Minimize leaning over open Stop flow into tanks prior to Heed all alarms

gauging, when possible

- Inversion/high humidity/lack of crosswind when possible hatches - stand away/upwind/
- respiratory protection as
- provided during employer training

Immediately report any

health symptoms

wind could increase danger

Wear PPE as required/provided

Attend Hazard Communication Training

- **Be Aware of Potential Ignition Sources:**
- Open flames
- Non-approved electrical equipment/ • Ensure proper grounding/ bonding
- devices

If you are not sure, STOP the job and ask!

Everyone has the right to STOP work that is unsafe.

Under the Occupational Safety and Health Act, employers are esponsible for providing a sete and healthy workpace and workset have rights OSHA can hish arsiver questions or contents from employers and workars of SHA On-site Consultation Program (www.ssha.gov/consultation) fiers free and contrained advice to small and medium-sized businesses, with priority given to high-hazard worksles, Formore micromation, contact your regional or area OSHA of the (www.ssha.gov/timil/Ramp).tmit), call :=00-237-C3HA (6742), or visit www.ssha.gov/ or area OSHA of the (www.ssha.gov/timil/Ramp).tmit), call :=00-237-C3HA (6742), or visit www.ssha.gov/ or area OSHA of the (www.ssha.gov/timil/Ramp).tmit), call :=00-237-C3HA (6742), or visit www.ssha.gov/

Through the OSHA National Steps Alliance, this Tank Gauging Hazard Alert is for informational purposes only It does not necessanly reflect the official views of OSHA or the U.S. Department of Labor. March, 2015

designed by:

A Worker Dies While Tank Gauging

A worker was gauging a tank when she realized the tank was full, so she started to divert the supply line to another tank. The shutoff valve blew out, releasing sour crude and hydrogen sulfide. She tried to walk away but only made it about 15 ft. before she was overcome by the gas and died. When investigators inspected the incident, they found a personal gas monitor, a 30-minute SCBA, and a SAR sitting inside her vehicle, unused.

hat went	wrong?
1	
-	
-	
2	
-	
-	
3	
-	
-	
-	
id you find	d anything else that may have contributed to this accident?
id you find	d anything else that may have contributed to this accident?
id you fin 1	d anything else that may have contributed to this accident?
id you fin 1 2	d anything else that may have contributed to this accident?
id you find 1 - 2	d anything else that may have contributed to this accident?
id you find 1 2	d anything else that may have contributed to this accident?
id you fin 1 2 3	d anything else that may have contributed to this accident?
id you fin 1 2 3	d anything else that may have contributed to this accident?
id you find 1 2 3 -	d anything else that may have contributed to this accident?

Offshore Operations

Minor problems in onshore environments can be more critical in offshore environments. Offshore operations are typically remote, have compact facilities, and have limited escape and evacuation routes. According to API and BSEE, offshore workers must be regularly trained in the use of oxygen resuscitation equipment. If a hazardous H₂S condition is known or suspected, boats and helicopters should approach the site from an upwind direction when possible.

Gas Processing Plants

Gas processing operations typically include higher volumes of gas containing H₂S, potentially higher concentrations of H₂S, and a greater number of workers and more equipment. Many gas treating and sulfur recovery processes happen in gas processing plants.

Because most of these methods result in a concentrated H₂S stream or reaction product, companies using these methods must set up a process safety management program according to 29 CFR 1910.119. Your company should set up a corrosion monitoring program to reduce internal and external corrosion activity that can affect equipment in H₂S service.

If workers are working around gas and liquid handling systems that could contain H₂S concentrations at or higher than 10 ppm, workers should use special techniques to quickly spot and plug any leaks in those systems. These monitoring techniques include visual observation, soap bubble tests, portable detectors, and fixed monitoring equipment. API recommends regularly scheduled inspection of equipment, such as pump seals, for leaks. Your company must keep the results of leak tests for at least 1 year.

Detection and Monitoring Methods

Your perception of H_2S odors can give a false sense of security to an already unseen hazard. H_2S will quickly paralyze your sense of smell at higher concentrations. Do not depend on your sense of smell to detect the presence of H_2S . Below are the readings, in ppm, at which you would detect the odors of H_2S . If you ever notice the smell of H_2S , hold your breath and leave the area immediately.

Companies must test your work area regularly for H₂S based on a company-created schedule to keep you from being overexposed to it. Air monitoring must be performed before each job and continuously while workers are in the area. Your company may use several different types of monitors for air monitoring, including fixed monitoring, portable monitors, and personal monitors. Only workers who have been specifically trained in how to use H₂S monitors can use them.

Hydrogen Sulfide Concentrations with Noticeable Odors			
H ₂ S Concentration	Odor		
0.13 ppm	Minimal perceptible odor		
0.77 ppm	Faint but perceptible odor		
4.6 ppm	Easily detectable, moderate odor		
27 ppm	Strong, unpleasant odor		
28 – 100 ppm	Rotten egg odor or sweet, acetone-like odor		

Training

When training workers on methods of detection and monitoring, the instructor must emphasize sitespecific types of detection and monitoring devices and sampling strategies available. Training must include an explanation of warning alarms and emergency response procedures associated with the specific types of detection and monitoring devices.

Training will go over:

- Types of detectors and/or monitors available
- Manufacturer's recommendations
- Purposes, suitability, capabilities, limitations, calibration, function testing, placement, use, and maintenance of detectors and/or monitors available
- Chemicals or other factors that can give inaccurate results (based on the detection method)
- Required hands-on training with the specific H₂S detector to be used in the field

A gas detector is a device that will alert you if there is a gas present. It is usually a fixed device that is part of a greater alarm system, which sends a warning in the form of an alarm to warn anyone in the area to leave. These detectors can be used to detect toxic, flammable, and combustible gases as well as oxygen depletion levels.

A gas monitor can be portable, allowing workers to clip them onto their uniforms when heading to work in an area that might have gas leaks. These devices are easy to use and light, allowing workers to carry them around as they work. They are also wireless.

H₂S monitors give readings in ppm. This makes it easy to compare the readings to exposure limits, which are also in ppm. You should receive a user manual for each monitor. The manual should include operating instructions, including how to use the monitor, start up and warm up the monitor, perform zero checks, calibrate, set and test the alarm, perform preventative maintenance, check performance, monitor recovery time after H₂S exposure, and perform troubleshooting.

The monitor will include a trouble signal that tells you if the machine is malfunctioning. Check your manual for this information, and make sure you know the trouble signal for emergencies.

Fixed Detector Service and Calibration

All H₂S detectors must be serviced and tested according to the manufacturer's recommendations. Detectors must be calibrated at least once every 3 months. The detectors may need to be tested more often depending on which sector of the oil and gas industry you work in.

During offshore operations, calibrate fixed detectors according to the following requirements per MMS 30 CFR 250.490. When conducting drilling, drill stem testing, well-completion, or well-workover operations in areas classified as H₂S present or H₂S unknown, detectors must be tested at least once every 24 hours. When drilling, begin functional testing before the bit is 1,500 ft. (vertically) above the potential H₂S zone. When conducting production operations, test all detectors at least every 14 days.

Your company must maintain records of testing and calibrations, including dates of testing, in the drilling or production operations report at the facility to show the present status and history of each device. These records must be available for inspection by BSEE personnel for offshore facilities. Note that both portable and fixed H₂S detectors must meet Instrument Society of America (ISA)-S 12.15 requirements.

Fixed Detectors

Fixed detectors, also referred to as monitors, continuously monitor H_2S concentrations in a specific location. On offshore sites, detectors must be set up within 10 ft. of equipment that may release H_2S . Fixed detectors are usually located in key areas, such as where workers are likely to be present or where H_2S may be released or accumulate. Fixed monitoring systems must have working alarms that you can both see and hear that correspond to set concentrations of H_2S .

Alternatively, some companies may have you use colorimetric gas detector tubes to monitor H₂S. Colorimetric gas detector tubes are made from high-quality borosilicate glass tubes with a uniform inside diameter. Inside, each tube is packed with a gas detecting reagent. When both ends of a detector tube are broken, inserted into the pump, and an air sample is pulled through the tube by means of pulling back on the pump handle, the detecting reagent changes color. The length of the discolored layer is proportional to the concentration of the gas or vapor in the sample because of the fixed volume of sample, which is always 100 milliliters. Graduations printed on the tube showing the gas concentration make it fast and easy to take a reading with detector tubes. However, note that the accuracy of a colorimetric gas detector tube reading is +/- 5 to 25%. Depending on the task, you may need to wear an SAR.

Fixed H₂S detector

Personal Monitors

Workers must wear personal monitors to stay aware of H_2S concentrations in the air around them as they work. Any time you enter an area where the concentration of H_2S may exceed 10 ppm, you need to wear a personal monitor. If the alarm on the monitor goes off, leave immediately and do not reenter without the proper respiratory protection.

Personal air monitors should take in samples that represent the air a worker is breathing. You must position the personal monitor's air intake point in your breathing zone to assess the air you are inhaling. This zone encompasses the area just in front of your face and shoulders, a hemisphere with a 6-9 in. radius that centers on your nose. Check with your client operator for their requirements.

To be effective, personal monitors must be attached to workers near the neck and face as close to the mouth and nose as possible to measure the air from the breathing zone.

Clear

Two Workers Die from Hydrogen Sulfide Exposure

Two workers were getting ready to enter a confined space for maintenance work. They entered the confined space, and after a few minutes, their personal monitors started to go off. There was hydrogen sulfide in the air. Both workers ignored the alarm and continued to work. They were overcome by hydrogen sulfide and died.

What went wrong?

1.

Did you find anything else that may have contributed to this accident?

١.		
2.		
3.		

Portable Monitors

Portable monitors, also known as gas detectors, are designed to be placed between workers and the source of H_2S or in a confined space. Workers that are required to use portable gas detectors must be trained on their use, maintenance, and calibration. Workers must receive hands-on training with the specific H_2S detector they will be using in the field. Your company must document and keep a record of all training you receive. Now that we know what gas detectors are, let us learn how to use them in the field.

The breathing zone

Using a Gas Monitor

As a worker, it is your responsibility to monitor all potentially hazardous atmospheres before entering to determine if there are hazardous gases present. Monitoring is especially important before working in confined spaces or performing hot work. The gas monitor used to identify atmospheric hazards must be a properly calibrated, direct-reading instrument. Gas testing must be conducted by someone knowledgeable in the use of the instrument and familiar with the confined space. Most companies will purchase a multi-gas monitor that checks the space for oxygen, LEL (combustible gas), carbon monoxide, and H₂S. If a multi-gas monitor is not being used, the atmosphere must be tested in the following order:

- 1. Oxygen
- 2. Flammable and combustible gases
- Suspected toxic gases (carbon monoxide and H₂S)

This order is important because many combustible gas monitors work by burning the gas inside the monitor. If oxygen levels are inaccurate, this could cause false readings. Compare you readings to the acceptable entry conditions shown in the Monitoring for Potentially Hazardous Atmospheres chart.

If hazardous atmospheric conditions are found, do not allow anyone into the area until it has been deemed safe for entry. Ventilate the space to reduce the atmospheric contaminants to a safe level. After starting ventilation, wait a minimum of 10 minutes and then test the atmosphere again to determine if the ventilation is improving the atmosphere. If you suspect that there may be other gases present, your company must periodically monitor the atmosphere to determine their presence.

Monitoring for Potentially Hazardous Atmospheres			
Atmospheric	Acceptable Entry		
Condition			
Oxygen	19.5% to 23.5%		
LEL (combustible gas)	0% to 10% (many		
	companies only allow		
	0%)		
Carbon monoxide	0 ppm to 25 ppm		
H ₂ S	0 ppm to 10 ppm		

Gas Monitor Operation

All gas monitors will have different characteristics. Be sure that you are familiar with the make and model of the gas monitor you will use. It is important to read the user manual before you begin using a gas monitor.

When turning on a gas monitor, make sure you are in an atmosphere similar to the one you will be working in (i.e. humidity, temperature, dampness, etc.) to avoid false readings. Making sure the atmosphere is clean and free of atmospheric hazards is important because the gas monitor will auto-span (automatically calibrate for oxygen).

When testing the atmosphere in confined spaces, the monitor will need to be equipped with pump and suction tubing. This allows you to take direct readings without putting the gas monitor itself inside the space. Take readings from various levels, such as in the bottom, the middle, and the top of the space, because certain gases can rest at different levels within the space. For instance, H_2S is heavier than air, so it will settle in the bottom of the space, while methane is lighter than air, so it will rise to the top. Gases will stratify according to their vapor density.

Clear

How gases stratify will change with environmental conditions, such as temperature and pressure.

When using a gas monitor with pump and suction tubing, allow enough time for the air to migrate, or move, to the detector. Wait at least 1 second per foot of tubing (or as per manufacturer recommendations). Gas monitors equipped with a pump may require a bump test. The monitor will normally prompt you to block the pump inlet during the startup process to make sure the pump is working properly.

During startup, the gas monitor will go through an initial self-test. If the self-test or bump test is not successful, the monitor will not work properly. Even if these tests are successful, you still have to conduct a bump test to verify that each sensor is working correctly.

Gas monitor equipped with pump and suction tubing

Bump Testing

Bump testing is a way to make sure a gas monitor's alarms and sensors are functioning properly. This process exposes the gas monitor to a defined concentration of gases. The gas monitor needs to be exposed to gases at a concentration that exceeds the lowest alarm setting for each sensor. Exceeding the lowest alarm setting concentration will activate the alarm. If the alarm goes off, it verifies that all sensors are working correctly and that the alarms are in good working condition. Bump testing should be performed before each use. Make sure you are in a clean environment to perform a bump test. Bump test according to manufacturer specifications.

Follow the steps below to perform a proper bump test:

- 1. Make sure you have an approved calibration gas cylinder.
- 2. Turn the gas monitor on using the normal startup procedure.
- 3. Attach the proper flow-per-minute regulator to the cylinder.
- 4. Attach the tubing to the calibration fitting for your gas monitor.
- 5. Open the regulator to apply calibration gas to the gas monitor.

The gas monitor should adjust to and accurately read the concentrations of the different gases contained in the calibration gas bottle. The alarms should activate once the low alarm settings are breached.

While bump testing confirms that the sensors and alarms are working properly, it does not confirm the accuracy of the readings. Gas monitors must be properly calibrated to determine the accuracy of the readings.

Calibration

When you calibrate a gas monitor, you are exposing its sensors to known concentrations of various calibration gases to make sure the monitor readings will be accurate. The concentration of the calibration gases are listed on the calibration gas cylinder. Performing a calibration on a gas monitor means you are comparing the readings of the gas monitor to concentrations listed on the cylinder. Over time, a gas monitor's sensitivity will become unbalanced. Performing a calibration gives the gas monitor the opportunity to balance its sensitivity. If the sensors no longer accurately read the concentration values, i.e., give readings that do not match the gas concentrations listed on the calibration cylinder, replace the sensors.

In order to properly calibrate a gas monitor, you will need calibration gas and a regulator. Check the gas monitor's user manual to see which type of calibration gas you need. Make sure your calibration gas is not expired. Expired calibration gas can give false readings. Regulators are used to control the rate of gas released from the calibration gas cylinder. The Choosing the Correct Regulator table on page 30 lists characteristics to keep in mind when choosing a regulator.

Many gas monitors now come with a docking or calibration station. This is used to house all the calibration equipment in one place. A calibration station provides a hands-free calibration process for the user. These stations are not universal, so make sure the specific model of the gas monitor is compatible with the calibration station.

Calibration gas cylinder

All calibrations must be performed according to manufacturer instructions. The basic steps to calibrating a gas monitor are:

- 1. Gather the materials listed in the Choosing the Correct Regulator table on page 30.
- 2. Turn the gas monitor on using the normal startup procedure.
- Activate the gas monitor's calibration feature. This varies from gas monitor to gas monitor. Some require pressing and holding two buttons simultaneously where others require pressing one button for a certain period of time. Check your user manual for instructions.
- 4. Connect the appropriate regulator to the appropriate calibration cylinder.
- 5. Connect the regulator and calibration adapter using the tubing.
- 6. Apply the calibration gas from the calibration cylinder by opening the regulator when the monitor tells you to apply span gas.

- 7. Allow the gas to cycle through the monitor until it tells you that the calibration is successful.
- 8. Follow the instructions on the monitor screen to set calibration dates and save the calibration.
- 9. Document the calibration on the log.

Any time a gas monitor is dropped or handled in an unusually rough manner, perform another calibration. It is important to be familiar with your company's policies about gas monitor usage and calibration requirements. Many companies use a third-party vendor to perform their calibrations. Even if the company does not want their workers to perform calibrations, workers are still required to perform bump tests before each use.

Choosing the Correct Regulator				
Characteristic	What It Is?	Notes on Use		
Flow rate	Volume of fluid that passes through a given surface per cubic feet per second	 Using a regulator with the wrong flow rate will decrease calibration accuracy 		
		 Find the correct flow rate for the gas monitor you are using in the user manual 		
Demand flow	Pulls the gas from the cylinder as needed	- Use demand flow when your gas monitor has a built-in pump or when you are performing an automatic calibration using a calibration station		
Fixed flow	Pulls the gas from the cylinder at a fixed rate	 Use fixed flow when your gas detector does not have a built-in pump 		
Material type	Brass or steel	 Use brass regulators for non-corrosive, non-reactive gases 		
		- Use stainless steel regulators for corrosive, reactive gases		
Cylinder size	The cylinder size must match the regulator size	 Read the cylinder label to determine the cylinder size for the regulator 		
		 Do not guess when choosing cylinder size because the wall thickness and pressure the gas is stored under cannot be determined at a glance 		
		 Not all dimensions of cylinders will indicate the same capacity 		
Tubing	Collects the calibration gas and funnels it toward the air monitor	- Tubing usually comes in 3-foot lengths - Check the tubing before each use to make		
		sure it remains defect-free		
		change the tubing annually		
Calibration adaptor/ cup/cap	Directs and traps the calibration gas	- The calibration adaptor/cup/cap forces the gas to flow over the sensors of the instrument		

Clear

Respiratory Protection

If engineering and administrative controls cannot keep levels of H₂S below exposure limits, you must wear appropriate PPE and respiratory protection. PPE must be made from material that H₂S cannot pass through or weaken. Workers required to work in areas contaminated with H₂S concentrations over 10 ppm or their company's action level must wear supplied-air respiratory protection.

Training

Your company must provide you with annual respiratory protection training. You must be trained in how to use a respirator. You must be taught how to use, inspect, don, doff, and check the seals of the respirator.

You must be trained in the following site-specific topics before beginning work on the site:

- Location of supplied air respirators (SARs)
- Location of spare air cylinders, if applicable
- Site-specific issues
- Situations that would require respirators
- Limitations and capabilities of positivepressure/full-facepiece respirators
- Limitations and capabilities of supplied air respirators
- Brand/model/size of respirators available

Medical Evaluation

Your company must provide you and your coworkers with a medical evaluation to determine if you can use a respirator safely. This medical evaluation will determine if you have any medical conditions that would prevent you from using a respirator effectively. Medical conditions that can pose problems with respirators include lung, heart, and brain disease, glasses or contact lenses, back injuries, and claustrophobia.

A physician or other licensed health care provider (PLHCP) must perform the medical evaluation using the OSHA Respirator Medical Evaluation Questionnaire included in Part A of Appendix C in 29 CFR 1910.134. If the PLHCP that evaluated you believes you need a follow-up exam, your company must provide you with that exam. These medical exams must take place during working hours and at no cost to workers. You will receive a copy of the evaluation from your PLHCP. For you to use a respirator at work, your company must receive a written recommendation from the PLHCP that you can use that respirator, a statement that the PLHCP has provided you with a copy of that recommendation, any recommended respirator use restrictions, and any recommendations for follow-up exams.

Fit Testing

You must be fit tested before you can use a respirator. Fit tests determine if a respirator fits you properly. Fit tests are completed yearly and may be required more frequently if there are any changes to your facial structure that could affect the seal of a respirator, such as dental surgery or drastic weight changes. There are many common causes of leaks, including head size, face shape, wrinkles, missing dentures, and hollow temples.

For a respirator to fit, you must also meet certain requirements. You cannot have any condition that interferes with the face-to-facepiece seal or valve function. If you wear glasses or safety goggles, they cannot interfere with the seal either. workbook is published by Veriforce/PEC. It is copyright protected and may not be reproduced or distributed to any other parties without written consent from the publishe Γhis

You must be clean-shaven because facial hair can interfere with the respirator seal. The most common cause of respirator seal leakage is facial and head hair. Follow your company's policy on facial hair. Improper fit, usage, or maintenance can compromise the protectiveness of the respirator.

PortaCounts may be used for QNFTs

There are two types of fit tests: a qualitative fit test (QLFT) and a quantitative fit test (QNFT). A QLFT passes or fails you in respirator fit based on how you react to a test agent, usually an aerosol with a strong smell. OSHA QLFT protocols include saccharin, isoamyl acetate (also known as banana oil), Bitrex, and irritant smoke. A QNFT assesses respirator fit by numerically measuring how much outside air leaks into your respirator. A PortaCount may be used to perform a QNFT. A PortaCount works by measuring the concentration of microscopic dust particles in the ambient air and then measuring the concentration of those dust particles that leak into the respirator. The ratio of these two concentrations is called the fit factor. See Appendix A of 29 CFR 1910.134 for more information about fit-test protocols.

Types of Respirators

Two major types of respirators are air-purifying respirators (APRs) and SARs. APRs filter out contaminants from the existing atmosphere. Note that APRs are not recommended for use in areas contaminated with H₂S. SARs supply clean air to the user from another source.

An SAR gives the user breathing air from an independent source, such as a cylinder or compressor. There are two types of SARs: hoseline (or airline) respirators and self-contained breathing apparatuses (SCBAs). There are three types of SCBAs: work units, rescue units, and escape packs. Escape pack SCBAs are used for short-term emergency use, and are also known as escapeonly respirators, emergency-use respirators, or auxiliary SCBAs. You must know where these escape packs are located so that if there is an emergency, you know where to get appropriate respiratory protection quickly.

A hoseline (or airline) respirator has a hose attached to it that draws air from an independent source that is not carried by the user. The hoseline (or airline) respirator limits motion based on how long the hose is, and it may need to be used with a full facepiece and an auxiliary SCBA. With an SCBA, the user carries the breathing air source. This allows the user unlimited motion, but forces the user to carry the weight of the breathing air source. Cylinders supply breathing air to SCBAs, while compressors or cascade systems supply breathing air to hoseline (or airline) SARs. A cascade system is designed to provide breathing air to hoseline (or airline) respirators. Make sure each bottle has been tested for accurate oxygen content before you go under air. Look for a tag.

Respirator protection systems must be NIOSHapproved. Breathing air must meet the following requirements:

> • Compressed breathing air must meet ANSI Grade D requirements

If you are using a SAR or an SCBA that contains compressed air, do not refill the respirator with compressed pure oxygen, or vice versa. Refill the cylinder with ANSI Grade D air at the same oxygen concentration that was in it before. Check the label to make sure you are refilling with the right air supply.

Worker wearing an SCBA

Respirator Limitations

All respirators are limited by their service life and assigned protection factor (APF). Service life refers to the length of time respiratory equipment provides adequate protection to the wearer. When you inspect your respirator, check the cylinder for adequate service life for the work you are about to perform. If the respirator has reached the end of its service life, do not use it; tag the respirator out and remove it from service. Each type of respirator has an APF based on what it is equipped with. A respirator's APF refers to the workplace level of respiratory protection that a respirator or class of respirators is expected to provide to workers. APFs go up based on the respirator mask, facepiece, and mode. Respirators with higher APF values are more protective. Respirators that are put in positive-pressure mode have higher APF values than those in negativepressure mode. SCBAs have the highest APFs. The Assigned Protection Factors table on page 34 describes the APFs for each type of respirator.

Each respirator also has specific limitations inherent in its design. One of the most common problems is respirator seal leakage. The Respirator Type Pros and Cons chart on page 34 shows the advantages and disadvantages of each type of respirator.

Each type of respirator can only be used for so long; the useful life of a respirator does not last forever.

Air Supply

The air supply in a SAR will depend on how much air is stored and how many workers are breathing from the air supply. Whether workers are using a continuous air supply from a compressor system or an air supply of multiple Grade D breathing air compressed gas cylinders, it is important to put a worker in charge of monitoring. Compressor systems are monitored for proper function and to make sure compressed gas bottles do not get completely exhausted of air.

An SCBA's air supply will vary between workers depending on lung capacity, physical ability, and their familiarity with wearing a respirator. The low alarm is usually set at 500 lbs. of that air supply, which gives workers time to get to a safe area before they run out of air. When the low air alarm sounds, workers have approximately 5 minutes of air left. If the low alarm sounds, workers should immediately leave the area.

Assigned Protection Factors					
Type of respirator	Quarter mask	Half mask	Full facepiece	Helmet/ Hood	Loose-fitting facepiece
SAR					
- Demand mode		10	50		
- Continuous flow mode		50	1,000	25/1,000	25
 Pressure-demand or other positive- pressure mode 		50	1,000		
SCBA					
- Demand mode		10	50	50	
- Pressure-demand or other positive- pressure mode			10,000	10,000	

	Respirator Type Pros and Cons			
Respirator Type	Hoseline/Airline SAR	SCBA		
Pros	 Used above IDLH with an escape pack Used in oxygen-deficient atmosphere with escape pack Not contaminant-specific Low breathing resistance Lightweight 	 Offers the highest APF Not contaminant-specific Breathing times are relatively predictable Can be used in oxygen-deficient, IDLH, and unknown atmospheres Air supply is carried on the user's body 		
		 Can access remote air supplies via a hoseline connection 		
Cons	 Hoseline can interfere with mobility Hoseline can never be longer than 300 ft. from the last high pressure connection May need to be used with a full facepiece and an auxiliary SCBA 	 Cost Requires a lot of support equipment Can have a very limited use duration under certain circumstances Tends to be a lot heavier and bulkier than SAR Usually requires more training than SAR 		

Selecting Respirators for Use

Before you use a respirator in the field, you must know the:

- Location of hoseline/airline SARs and SCBAs
- Location of spare air cylinders, if applicable

Respirator Use

Respirator Inspection

Inspect respirators on a regular basis. How frequently you inspect a respirator depends on what the respirator is used for. Respirators used in non-emergency situations must be inspected before each use and during cleaning. Emergency-use respirators should be inspected once a month and before and after each use. Inspect emergency escape-only respirators before bringing them into the workplace. When you inspect a respirator, check its function, tightness of connections, each component for wear and tear, and elastic parts for dry rot and pliability.

When you inspect an SCBA, make sure the air cylinders are fully charged. Check the air cylinder pressure level to make sure pressure is at 90% or higher before you use the respirator. Recharge the cylinder

Low oxygen indicator

if its pressure falls at or below 90% capacity before you store the respirator. Also inspect the regulator and warning devices to make sure they are still functioning.

- Situations that would require respirators
- Limitations and capabilities of positivepressure/full-facepiece respirators
- Limitations and capabilities of SARs
- Brands, models, and sizes of respirators available
- Necessary site-specific respirator information, if any

Keep records of emergency-use respirator inspections. Document the inspection date, the inspector's name and signature, inspection results, any required maintenance, and the respirator's serial number. All of this information should be available on a tag attached to the respirator or in a report filed at the facility. Your company must keep each report on file until a more recent report is received.

Respirators that fail inspection should be removed from service and thrown away or repaired. Only trained workers can repair respirators, and some repairs must be done by a manufacturer technician. If a respirator needs to be repaired, let your supervisor know so that the right person can make the repairs.

Checking the Seal

A user seal check determines if the respirator is properly sealed to your face to keep out contaminated air. There are two types of user seal checks: positivepressure checks and negative-pressure checks. You must check the seal of your respirator each time you use it. You can use either method to check the seal, or you can follow the respirator manufacturer's instructions if they are equally effective.

To perform a positive-pressure check, close off the exhalation valve with your hand and exhale gently into the facepiece.

The respirator is properly sealed if none of your exhaled breath leaks out of the seal. For most respirators, you have to remove the exhalation valve cover before closing off the exhalation valve. Carefully replace the valve after the test.

To perform a negative-pressure check, close off the inlet opening of the cartridge by covering it with the palm of your hand or by replacing the filter seal. Inhale gently so that the facepiece collapses slightly, and hold your breath for 10 seconds. Note that some cartridge inlets cannot be effectively covered with the palm of your hand. If you have one of these cartridges, cover the inlet opening of the cartridge with a thin latex or nitrile glove. If the facepiece remains slightly collapsed after holding your breath for 10 seconds and no air leaks in, the seal fits.

Trainer demonstrating a user seal check

Maintenance, Cleaning, and Storage

You may notice vapor or gas breakthrough by either taste or smell, changes in breathing resistance, or detecting facepiece leakage. If you notice this, replace either the entire respirator or the expired canister. If you cannot replace the respirator or the expired piece, get it repaired.

To get the most out of each respirator, wash your face and the respirator facepiece with soap and water before and after each use. Respirators used by more than one worker must be cleaned and disinfected before they are worn by a different worker. Clean and disinfect emergency-use respirators and respirators used in training and fit testing after each use.

You should only clean a respirator if you have been trained in how to do so. To clean a respirator, follow these steps:

- 1. Take the respirator apart. Disassemble the facepiece by removing speaking diaphragms, valves, hoses, and any other parts recommended for cleaning by the manufacturer.
- 2. Repair or throw away any defective parts.
- Wash respirator parts in warm water with a mild detergent or with a cleaner recommended by the manufacturer. Use a stiff bristle brush (but not a wire brush) to remove any dirt.
- Rinse respirator parts thoroughly in clean, warm, running water. Drain. Make sure all soap is removed because soap left behind can cause skin irritation and respirator degradation.
- 5. Hand-dry respirator parts using a clean, lint-free cloth or allow them to air dry.
- 6. Put the respirator back together, replacing parts when necessary.
- 7. Test the respirator to make sure all parts are still working.

If the soap you used did not contain a disinfecting agent, you must soak the respirator for 2 minutes using either of the following cleansers before rinsing the respirator:

- Diluted bleach (add 1 milliliter [mL] of bleach to 1 liter [L] of warm water)
- Diluted iodine (add 0.8 mL of tinctured iodine to 1 L of water)
- Other commercially available disinfectant cleansers recommended by the manufacturer

Respirators need to be stored in a safe place away from dust, sunlight, extreme temperatures, excessive moisture, and damaging chemicals to prevent facepiece and exhalation valve deformation, damage, and contamination. Emergency-use respirators must be stored in a designated area and according to manufacturer instructions.

Note that before you can work while wearing a respirator (also known as working "under air"), your company must provide you with a medical evaluation, fit test, and hands-on training that covers site-specific respirator equipment use and includes an evaluation of demonstrated proficiency.

Immediately Dangerous to Life or Health

In addition to having established exposure limits, most chemicals will have a specific IDLH concentration. Once the established IDLH concentrations are exceeded, the area is considered to be an IDLH atmosphere. IDLH atmospheres cause irreversible adverse health effects or impair an individual's ability to escape from a dangerous atmosphere. Environments with less than 19.5% O_2 are oxygen deficient and considered IDLH. Any time workers are in an area that is IDLH, they are required to wear a positive-pressure demand SCBA or a hoseline/airline SAR with a full facepiece and an inline escape pack. Any situation consisting of an unknown hazard must be taken as an IDLH environment.

If workers are using respirators within an IDLH environment, one or more workers are required to be on standby outside the IDLH area, and at least one worker must be trained to perform first aid and CPR. The standby workers must maintain visual, voice, or signal line communication with the workers inside the IDLH area. Standby workers may be trained and equipped to rescue workers. If they are not trained for rescue, they must notify a rescue team if rescue is needed. If they are trained rescuers, these standby workers must be equipped with pressure-demand SCBAs, or with hoseline/airline SARs and auxiliary SCBAs, and retrieval equipment. Rescuers must use the buddy system and wear SCBAs if the emergency involves interior structural firefighting. Do not respond above your level of training.

Worker getting ready to enter an IDLH atmosphere

Respirators for Use with Hydrogen Sulfide and Sulfur Dioxide

To work in environments contaminated with over 10 ppm of H_2S or at or over 2 ppm $SO_{2'}$ ANSI and API recommend you wear one of the following forms of respiratory protection:

- A positive-pressure, full-facepiece hoseline/ airline SAR and carry an inline escape pack
- A positive-pressure SCBA

ANSI-approved SCBAs must be provided to all contractors and visitors if they must go into H₂S-infused areas. Offshore workers must use at least

two voice-transmission devices ("walkie-talkies") while wearing a respirator per 30 CFR 250.490.

Hydrogen Sulfide in Confined Spaces

 H_2S is extremely hazardous when present in confined spaces. A confined space is a space that is large enough for a worker to enter, has limited or restricted entry or exit, and is not meant to be occupied for a long amount of time. Many processes that require workers to perform tasks in confined spaces also put them at extreme risk of exposure to H_2S . Using the necessary safety measures for H_2S in confined space work will help keep you and your coworkers safe from the hazardous effects of the gas. These measures include:

- Obtaining a confined space permit that relates to H₂S exposure conditions (include the GPS location on the permit, if applicable)
- Conducting air monitoring before entering any confined space that may contain H₂S
- Ventilating the space before entering
- Conducting continuous monitoring while workers are in the confined space
- Venting or purging lines on vessels before beginning work
- Being aware of emergency rescue procedures if there is an overexposure to $\rm H_2S$
- Obtaining any necessary training for procedures relating to H₂S and confined spaces

Worker entering a confined space

SčH

Clear

One Worker is Injured, One Dies from Toxic Release

Two workers were unclogging a plugged steam ejector when they lost consciousness. Materials in the pipe had decomposed and released hydrogen sulfide and CO. The air had not been monitored for hydrogen sulfide, CO, oxygen, or LEL (flammable gases) before the work started. Worker No. 1 passed out shortly after removing the line's flange. Worker No. 2 called the Emergency Response Team, telling them it looked like Worker No. 1 was having a heart attack. Worker No. 2 tried to move Worker No. 1, but passed out. The ERT arrived and performed CPR. Both workers were rushed to the hospital. Worker No. 2 recovered and was later released from the hospital. Worker No. 1 never came out of his coma and died three days later.

hat went wroi 1	g?			
d you find an	rthing else that may	have contributed to	o this accident?	
1				
2.				
3.				

Emergency Response

Contingency Plans

Company contingency plans give workers a step-bystep guide for dealing with emergencies. All workers must know the location of the contingency plan, assembly points (also known as muster areas), and emergency equipment.

Workers must know and follow emergency shutdown procedures, rescue operations, and notification procedures. Contingency plans will have this information laid out for you.

If you work offshore, your company must turn in a copy of its contingency plan to BSEE. Onshore, it must be turned in to the appropriate state agency. Workers must know the details of their company's contingency plan to prepare for emergencies. You must learn how to respond to emergencies. You can find your company's instructions for how to respond to H_2S emergencies in the H_2S section of its contingency plan. Each contingency plan includes but is not limited to the following:

- An immediate action plan
- Characteristics of H₂S and SO₂
- How to notify facility workers and the public
- How to request aid and take follow-up action to get the public out of the area of the exposure
- A call list of people to notify in the event of an emergency
- A map of the area, showing public areas, evacuation routes, assembly point areas, safety equipment, phones, and possibly the radius of exposure
- Training requirements and drill schedule
- Shelter-in-place procedure (don SCBA, then get to the nearest safe haven)

- List of names and phone numbers of residents and government officials within the area of exposure
- Instructions for advanced briefing of the public within the area of exposure
- Emergency operating procedures for each job title
- How to contain and eliminate the emergency
- Emergency medical services available, including current names and phone numbers (prior contact should be made with designated medical facilities)
- Dispersion models, if applicable

Dispersion Models

Your company's contingency plan may also include an H_2S release dispersion model. Dispersion models should be considered when H_2S concentrations and volumes have the potential to affect workers or the public to the extent that an emergency condition may result from accidental release.

Dispersion models are available for predicting conditions that may result from a release of H_2S . Computer-generated H_2S dispersion models are acceptable for use in emergency planning. These models can be used to calculate vapor cloud travel and exposure concentrations over specific time periods. The effectiveness of dispersion modeling increases with the accuracy of the H_2S data input into the model.

Immediate Action Plans

You also need to know what to do immediately during an emergency. The immediate action plan for H₂S includes the following steps:

- 1. Stop breathing and purge and then don your emergency-use respirator or escape pack, if available.
- 2. If an emergency-use respirator or escape pack is not available, stop breathing and move away from the source of H_2S or SO_2 and get out of the affected area, making sure to move crosswind (at a right angle) and then upwind of the source.
- 3. Alert other affected workers.
- 4. Go to your company's emergency assembly point.
- 5. Account for all workers.
- 6. Help workers in distress if trained to do so and you have the appropriate PPE.

Refer to the DOT's Emergency Response Guidebook (ERG) Guide 117 for more information about H_2S emergency procedures.

Rescue

An H₂S emergency may leave a victim behind. Only rescue a victim if you have been trained to do so because you could easily add to the victim count if not. You must first protect yourself before you can rescue someone else. Companies must train workers in site-specific rescue techniques. If you are trained and are going to perform a rescue, tell your coworkers first so they know what is going on. When rescuing someone, always have backup. Take another trained rescuer with you. The following is a typical rescue procedure for H_2S :

- 1. If properly trained in rescue, don all necessary PPE.
- 2. With another trained rescuer, go to the affected person.
- 3. Move the affected person away from the source of hazardous exposure.
- 4. If the affected person has been overcome, notify the appropriate emergency medical services as quickly as possible.
- 5. Start your company's established emergency rescue procedures.
- 6. Remember to be aware of where rescue equipment is kept.

Know where your company's assembly point is

- 1. Move the victim to fresh air.
- 2. Call 911 or EMS.
- 3. If the victim is not breathing, position yourself on the upwind side and give rescue breaths using a one-way valve. Be careful not to inhale the exhaled breath of the victim, as it may contain enough H₂S to make you a victim too. Use a bag valve mask if available.
- 4. Remove and isolate contaminated clothing and shoes.

- 5. If the victim made contact with H₂S, immediately flush skin or eyes with running water for at least 20 minutes.
- 6. If liquefied H₂S got on the victim's skin, thaw frostbitten parts with lukewarm water.
- 7. If the victim was burned, immediately cool affected skin for as long as possible with cold water.
- Remember that health effects of H₂S exposure may be delayed. Make sure medical personnel are aware of the hazardous materials involved so they can protect themselves.
- 9. Send the Safety Data Sheet (SDS) the hospital with the victim.

Hydrogen Sulfide Overexposure Kills Three Workers

A worker entered a dry well confined space. As he descended an 18-ft. ladder, he was overcome by hydrogen sulfide. A second worker tried to rescue the first worker, but was also overcome by the toxic gas. A third worker entered the confined space to try to rescue the first two workers and suffocated. All three workers died at the scene.

What went wrong?

1.		
2.		

Did you find anything else that may have contributed to this accident?

3.		
4.		
5.		
6.		
7.		
8.		

First Aid

For a victim to survive, EMS must be activated as quickly as possible. In addition to quick response, each worker must know rescue techniques and how to give first aid to victims of H₂S and SO₂. Workers must be trained in rescue breathing, CPR, and resuscitation equipment. Your company should use drills to let you practice these techniques. For first aid and rescue, you need to know where each of these items are: first aid kits, resuscitators, and stretchers.

All workers must be trained in how to use fresh-air breathing equipment and resuscitation equipment. According to API and BSEE, offshore workers must be regularly trained on how to use oxygen resuscitation equipment. Practice drills should be frequent and comprehensive.

Bag valve mask

To perform basic first aid for a victim of H₂S, you must first identify the type of exposure that has occurred. Take a look at the first aid procedures in the First Aid for Victims of Hydrogen Sulfide table on page 44.

Post-exposure Medical Evaluation

Victims of H₂S inhalation are in danger of developing medical complications for some time after rescue. Once the immediate H₂S emergency is under control, victims should be transported to a health care facility to receive professional medical attention and remain under observation until released by a licensed health care professional. Some delayed physiological effects, which may appear at a later date, include pulmonary edema, dizziness, photophobia, and nausea, to name a few. In some severe exposures, hyperbaric oxygen therapy may be recommended by the attending physicians. Individuals overcome by H₂S who have recovered and wish to return to work must receive medical clearance before they can return to the workplace.

POTENTIAL HAZARDS	EMERGENCY RESPONSE
EALTH TOXIC; Extremely Hazardous. May be fatal if inhaled or absorbed through skin. Initial odor may be irritating or foul and may deaden your sense of smell. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control may cause pollution.	FIRE • DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED. Small Fire • Dry chemical, CO ₂ , water spray or regular foam. Large Fire • Water spray, fog or regular foam. • More opticine form fine optic foam.
RE OR EXPLOSION These materials are extremely flammable. May form explosive mixtures with air. May be ignited by heat, sparks or flames. Vapors may travel to source of ignition and flash back. Runoff may create fire or explosion hazard. Cylinders exposed to fire may vent and release toxic and flammable gas through pressure relief devices. Containers may explode when heated. Rupt CLE DEFETY CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number listed on the inside back cover. As an immediate precautionary measure, isolate spill or leak area for at least 100 meters (330 feet) in all directions. Keep unauthorized personnel away.	 Nove containers from fre area if you can bo it without risk. Damaged cylinders should be handled only by specialists. Fire involving Tanks Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. SPIL OR LEAK ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area All equipment used when handling the product must be grounded. Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire. Do not touch or walk through spilled material. Stop leak if you can do it without risk. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoft to contact spilled material. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until cas has dispersed.
Many gases are heavier than air and will spread along ground and collect in low or confined areas (sewers, basements, tanks). Keep out of low areas. Ventilate closed spaces before entering.	Consider igniting spill or leak to eliminate toxic gas concerns. FIRST AID Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing
ROTECTIVE CLOTHING Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.	 Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water fo at least 20 minutes.
VACUATION ipili See Table 1 - Initial Isolation and Protective Action Distances. ire If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions also consider initial execution for 1800 meters (1 mile) in all directions	 In case of contact with liquetied gas, thaw trosted parts with lukewarm water. In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin. Keep victim warm and quiet. Keep victim user and quiet. Effects of contact or inhalation may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.

Emergency Response Guidebook Guide 117

First Aid for Victims of Hydrogen Sulfide			
Inhalation	- Get medical attention immediately		
exposure	 If a person breathes in large amounts of H₂S, move that person to fresh air immediately, if you are trained to rescue. 		
	 If the victim is not breathing, perform rescue breathing, preferably with a one-way valve. 		
	- Keep the affected person warm and at rest.		
Skin exposure	- If liquid H ₂ S gets on the skin, immediately flush the contaminated skin with water.		
	- If liquid H ₂ S goes through your clothes, remove the clothes immediately and flush the skin with water.		
Eye exposure	- Flush your eyes immediately with large amounts of water, lifting the upper and lower lids occasionally.		
	- If your eyes still feel irritated after washing, get medical attention.		

Clear

Protect Yourself

 H_2S is an invisible hazard. To increase safety in oil and gas settings where H_2S is present or may be present, there must be guidelines for safe operations. In order to work safely in potential areas of exposure, you must be aware of your role, understand the controls that are in place, and follow any policies and procedures required by the operator or your company. You must receive training on planning, selecting equipment and materials, and operation and emergency procedures. To increase operational safety, H_2S courses may be required for those workers who have an increased potential to be exposed to H_2S . If you are working in an area where H_2S is present, you may be required to attend another H_2S -specific course. Hazards can be fatal if they are not fully understood or controls are not fully complied with. Commitment to H_2S safety is essential for the well-being of everyone on the worksite.

Appendix

Glossary

Acute toxicity – adverse health effects that happen after a single exposure to a substance, or multiple exposures within a short period of time

Administrative controls – work practices used to reduce worker exposure that cannot be controlled using engineering controls

<u>Air monitoring</u> – assessing what hazards are in the air and how concentrated they are

<u>Air-purifying respirator (APR)</u> – has an airpurifying filter, cartridge, or canister that removes specific air contaminants by passing air through an air purifier

<u>Alarm system</u> – provides an early warning signal; required at your workplace and should be seen and heard throughout the workplace

<u>Assigned protection factor (APF)</u> – a number that stands for the level of protection a properly functioning respirator would be expected to provide to properly fitted and trained users

<u>Audible alarms</u> – devices that can be distinguished above and apart from the normal sound level in the workplace

Auto-ignition temperature – the lowest temperature at which a substance will spontaneously ignite

<u>Bag valve mask</u> – a type of oxygen resuscitation equipment used to give breathing air to fallen workers in an emergency

Breathing zone – the area just in front of the face and shoulders; a hemisphere with a 6-9 in. radius that centers on your nose

Buddy system – a safe work practice that pairs workers together so that if one buddy needs helps, their buddy can assist them or call for help

Bump test – exposing a gas monitor to a defined concentration of gases to make sure its alarms and sensors are working properly

Burning and flaring – controlled burning of a high vapor pressure liquid or compressed gas in order to reduce or control the pressure and/or dispose of the of the product

<u>Calibration</u> – exposing gas monitor sensors to known concentrations of different calibration gases to make sure a gas monitor's readings are accurate

<u>Cascade system</u> – a system of breathing air cylinders designed to provide breathing air to hoseline respirators

<u>Chronic toxicity</u> – adverse effects that happen after continuous or repeated exposure to a toxic substance

<u>Compressor</u> – a machine that is part of the system used to provide breathing air to a hoseline suppliedair respirator

<u>Confined space</u> – a space that is large enough for a worker to enter, has limited or restricted entry or exit, and is not meant to be occupied for a long amount of time

<u>Contingency plan</u> – a company document that gives workers a step-by-step guide for dealing with emergencies

<u>Corrosion</u> – metal degradation caused by hazardous chemicals

page 48

<u>Crosswind</u> – moving at a right angle to the current wind direction

Density – a measurement of how heavy a substance is when compared to normal air at an equal temperature and atmospheric pressure

Dispersion model – a model used for predicting conditions that can happen as a result of a release of hydrogen sulfide; can be included as part of a company's contingency plan

Downwind – working where the wind could blow hydrogen sulfide in your direction

Emergency Response Guidebook – details how emergency responders should act during the initial phase of a dangerous goods or hazardous materials transportation incident; issued by the United States Department of Transportation

Engineering controls – reduce sources of exposure through jobsite design and modification

Escape pack – a self-contained breathing apparatus respirator used for short-term emergency use; also known as an emergency-use respirators, escape-only respirator, or an auxiliary self-contained breathing apparatus

<u>Fit test</u> – a test that makes sure a respirator is completely sealed with no leaks that would let contaminants in

Fixed monitor – a device that continuously monitors hydrogen sulfide concentrations in a specific location

<u>Hazardous atmosphere</u> – areas where there are contaminants in excess of the permissible exposure limit or threshold limit value-time-weighted average **Hoseline respirator** – a supplied-air respirator that gets breathing air from a cascade system or compressor from an attached hose; also known as an airline respirator

Hoseline respirator – a supplied-air respirator with a hose attached to it that draws air up from an independent source that is not carried by the user; also known as an airline respirator

Hydrogen sulfide (H₂**S**) – toxic gas that is colorless and collects in low-lying areas and confined spaces

Immediate action plan – a plan that describes what to do as soon as you are aware of an emergency situation

Immediately dangerous to life or health (**IDLH**) – an environment that causes negative health effects that cannot be reversed and reduces your ability to escape from a dangerous atmosphere

Job safety analysis (JSA) – formal review of a jobsite for hazards that is completed before work begins

Kick – also known as a burp; an entry of water, gas, oil, or other formation fluid into the wellbore during drilling or work over that occurs because the pressure exerted by the column of fluid in the wellbore is not great enough to overcome the pressure exerted by the fluids in the formation drilled

<u>Maximum use concentration (MUC)</u> – the maximum atmospheric concentration of a hazardous substance a worker can be expected to be protected from when wearing a respirator that is determined using a respirator's assigned protection factor and a hazardous substance's exposure limit

Appendix

<u>Metal sulfide</u> – a product formed by a reaction between hydrogen sulfide and a metal, such as iron or steel, which could auto-ignite and burn when exposed to air

Naturally occurring radioactive material (NORM) – made up of materials enriched with radioactive elements found in the environment

Negative-pressure seal check – a way to check a respirator's integrity by closing off the inlet opening to see if any air leaks into the respirator

Oxidizer – a chemical other than a blasting agent or explosive that initiates or promotes combustion in other materials, causing fire either by itself or through the release of oxygen or other gases

Oxygen deficiency – when there is less than 19.5% oxygen in the air

Oxygen resuscitation equipment – used to give breathing air to fallen workers in an emergency

Parts per million (ppm) – a measurement that means parts of a vapor or gas per million parts of air, by volume

Personal monitor – a device workers wear within the breathing zone that measures hydrogen sulfide concentrations in the surrounding air

Portable monitors – also known as gas detectors; a device designed to be placed between a worker and the source of hydrogen sulfide or in a confined space; used to measure the amount of hydrogen sulfide in the atmosphere

Positive-pressure seal check – a way to check a respirator's integrity by closing off the exhalation valve to see if any air leaks out of the respirator **Qualitative fit test (QLFT)** – an exam that relies on your response to a test agent to determine if a respirator is completely sealed

Quantitative fit test (QNFT) – an exam that measures how much a respirator leaks

<u>Regulator</u> – a device used to control the rate of gas released from the calibration gas cylinder during portable monitor (gas monitor) calibration

<u>Respirator</u> – a device that covers your mouth and nose and is designed to improve the air your lungs breathe in

<u>Safety data sheet (SDS)</u> – gives detailed information about the hazards of a specific material and how to control those hazards

<u>Self-contained breathing apparatus</u> (<u>SCBA</u>) – a supplied-air respirator where the breathing air source is designed to be carried by the user

<u>Service life</u> – how long respiratory equipment provides workers with enough protection

<u>Shelter-in-place</u> – staying indoors until an emergency is over rather than trying to evacuate

<u>Soluble</u> – a substance's ability to dissolve in other liquids, particularly water

<u>Sour</u> – term commonly used to refer to environments or fluids (such as crude oil) that contain hydrogen sulfide

<u>Sour environments</u> – fluids that contain water and hydrogen sulfide (Core 2015 glossary)

<u>Spontaneous</u> – describes something that happens without warning

Standby worker – A worker required to be outside an immediately dangerous to life or health area while workers are inside who must maintain communication with the workers inside and may be trained and equipped to rescue workers inside or be available to notify a rescue team if needed

Stop work authority (SWA) – your right to stop work when you or your coworkers are at risk because of the way a job is being done

<u>Sulfide stress cracking</u> – cracks in susceptible metals caused by corrosive hydrogen sulfide

<u>Sulfur dioxide (SO₂)</u> – very irritating, toxic, and colorless gas that has a strong, nasty odor

Supplied-air respirator (SAR) – type of respirator that supplies clean air to the user from some other source

<u>Upwind</u> – working in an area away from the way the wind is blowing the source of hydrogen sulfide; moving opposite the direction the wind is blowing

<u>Ventilation</u> – a method of controlling the environment with air flow; an engineering control used to improve or maintain the quality of air in a work environment

Visual alarms – the use of steady, flashing, or strobe lights to alert workers to an emergency situation in areas with high noise levels

Wind sock – a device used to check which way the wind is blowing

Acronyms and Abbreviations

ACC	Acceptable ceiling concentration	со
ACGIH	American Conference of	CO ₂
	Governmental industrial myglenists	CPR
ANSI	American National Standards Institute	
ΔPF	Assigned protection factor	DOT
	ranging protection racio	EMS
ΑΡΙ	American Petroleum Institute	EDA
APR	Air-purifying respirator	EPA
BSEE	Bureau of Safety and Environmental	LKO
	Enforcement	g/L
CERCLA	Comprehensive Environmental	GHS
	Response, Compensation, and Liability Act	H ₂ S
CFR	Code of Federal Regulations	IDLH

•••••	• • • • • • • • • • • • • • • • • • • •
o	Carbon monoxide
CO ₂	Carbon dioxide
CPR	Cardiopulmonary resuscitation
τοσ	Department of Transportation
MS	Emergency medical services
PA	Environmental Protection Agency
RG	Emergency Response Guidebook
g/L	Grams per liter
GHS	Globally Harmonized System
H₂S	Hydrogen sulfide
DLH	Immediately dangerous to life or health

ISA	Instrument Society of America	ppm	Parts per million
JSA	Job safety analysis	QLFT	Qualitative fit test
L	Liter	QNFT	Quantitative fit test
LEL	Lower explosive limit	REL	Recommended exposure limit
mL	Milliliter	RP	Recommended practice
mmHg	Millimeters of mercury	RQ	Reportable quantity
мис	Maximum use concentration	SAR	Supplied-air respirator
NFPA	National Fire Protection Agency	SARA	Superfund Amendments and
NIOSH	National Institute for Occupational Safety and Health	SCBA	Self-contained breathing apparatus
NORM	Naturally occurring radioactive	SDS	Safety Data Sheet
	material	SO ₂	Sulfur dioxide
O ₂	Oxygen	STEL	Short-term exposure limit
OEL	Occupational exposure Limit	SWA	Stop work authority
OSHA	Occupational Safety and Health Administration	TLV	Threshold limit value
PAPR	Powered air-purifying respirator	TWA	Time-weighted average
PEL	Permissible exposure limit	UN ID	United Nations Identification Number
PLHCP	Physician or other licensed health	USCG	United States Coast Guard
PPE	care provider Personal protective equipment	WHMIS	Workplace Hazardous Materials Information System

Appendix